Prompt Management
Run experiments or change the specific model (e.g. from gpt-4o to gpt4o-mini finetune) from your prompt management tool (e.g. Langfuse) instead of making changes in the application.
Supported Integrations:
Quick Start​
- SDK
- PROXY
import os
import litellm
os.environ["LANGFUSE_PUBLIC_KEY"] = "public_key" # [OPTIONAL] set here or in `.completion`
os.environ["LANGFUSE_SECRET_KEY"] = "secret_key" # [OPTIONAL] set here or in `.completion`
litellm.set_verbose = True # see raw request to provider
resp = litellm.completion(
model="langfuse/gpt-3.5-turbo",
prompt_id="test-chat-prompt",
prompt_variables={"user_message": "this is used"}, # [OPTIONAL]
messages=[{"role": "user", "content": "<IGNORED>"}],
)
- Setup config.yaml
model_list:
- model_name: my-langfuse-model
litellm_params:
model: langfuse/openai-model
prompt_id: "<langfuse_prompt_id>"
api_key: os.environ/OPENAI_API_KEY
- model_name: openai-model
litellm_params:
model: openai/gpt-3.5-turbo
api_key: os.environ/OPENAI_API_KEY
- Start the proxy
litellm --config config.yaml --detailed_debug
- Test it!
- CURL
- OpenAI Python SDK
curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "my-langfuse-model",
"messages": [
{
"role": "user",
"content": "THIS WILL BE IGNORED"
}
],
"prompt_variables": {
"key": "this is used"
}
}'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"prompt_variables": { # [OPTIONAL]
"key": "this is used"
}
}
)
print(response)
Expected Logs:
POST Request Sent from LiteLLM:
curl -X POST \
https://api.openai.com/v1/ \
-d '{'model': 'gpt-3.5-turbo', 'messages': <YOUR LANGFUSE PROMPT TEMPLATE>}'
How to set model​
Set the model on LiteLLM​
You can do langfuse/<litellm_model_name>
- SDK
- PROXY
litellm.completion(
model="langfuse/gpt-3.5-turbo", # or `langfuse/anthropic/claude-3-5-sonnet`
...
)
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: langfuse/gpt-3.5-turbo # OR langfuse/anthropic/claude-3-5-sonnet
prompt_id: <langfuse_prompt_id>
api_key: os.environ/OPENAI_API_KEY
Set the model in Langfuse​
If the model is specified in the Langfuse config, it will be used.
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/chatgpt-v-2
api_key: os.environ/AZURE_API_KEY
api_base: os.environ/AZURE_API_BASE
What is 'prompt_variables'?​
prompt_variables
: A dictionary of variables that will be used to replace parts of the prompt.
What is 'prompt_id'?​
prompt_id
: The ID of the prompt that will be used for the request.
What will the formatted prompt look like?​
/chat/completions
messages​
The messages
field sent in by the client is ignored.
The Langfuse prompt will replace the messages
field.
To replace parts of the prompt, use the prompt_variables
field. See how prompt variables are used
If the Langfuse prompt is a string, it will be sent as a user message (not all providers support system messages).
If the Langfuse prompt is a list, it will be sent as is (Langfuse chat prompts are OpenAI compatible).
Architectural Overview​
API Reference​
These are the params you can pass to the litellm.completion
function in SDK and litellm_params
in config.yaml
prompt_id: str # required
prompt_variables: Optional[dict] # optional
langfuse_public_key: Optional[str] # optional
langfuse_secret: Optional[str] # optional
langfuse_secret_key: Optional[str] # optional
langfuse_host: Optional[str] # optional